

UNIVERSIDADE FEDERAL DE MATO GROSSO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO COORDENAÇÃO DE ADMINISTRAÇÃO ESCOLAR

PROGRAMA DE DISCIPLINA

CÓDIGO	DISCIPLINA		CARGA HORÁRIA			
30304482	ESTRUTURA DA MATÉRIA II		Total	Teórica	Prática	
			90	90		
DEPTO OFERTANTE		CURSO		REGIME		
FÍSICA		FÍSICA	Seriado	Crédito	N.ºCréditos	
				X	6.0.0	

E M E N T A

Teoria de Schroedinger. A Equação de Schroedinger independente do tempo. Soluções da Equação de Schroedinger para partícula livre. Potencial tipo degrau. Barreira de potencial. Poço quadrado. Penetração de barreira. Oscilador harmônico simples. O átomo de hidrogênio. Momento angular.

CONTEÚDO PROGRAMÁTICO

TEORIA DE SCHROEDINGER

A Equação de Schroedinger (argumentos para chegar a Equação Diferencial)

A Equação Diferencial. A função de onda que satisfaz a solução desta Equação Diferencial

A função da onda. Interpretação da função para funções de onda.

Densidade de probabilidade como grandeza mensurável e real

Exemplos de cálculos de densidade de probabilidade para algumas funções de onda.

Fluxo de probabilidade - a Equação da continuidade unidimensional

Valores esperados de:

- a) Posição
- b) Momento
- c) Energia
- d) De qualquer função
- e) O operador p e o operador E

A EQUAÇÃO DE SCHROEDINGER INDEPENDENTE DO TEMPO

A Equação diferencial. A função de onda que satisfaz a solução desta Equação Diferencial As autofunções

As propriedades das autofunções

A quantização de energia na teoria de Schroedinger

A PARTÍCULA LIVRE

Soluções de equação de Schroedinger para a partícula livre

O POTENCIAL TIPO DEGRAU

Soluções de Equação de Schroedinger para o potencial do tipo degrau Energia da partícula menor que a altura da barreira Energia da partícula maior que a altura da barreira Cálculos do coeficiente de transmissão e de reflexão Fluxo de probabilidade

O POÇO DO POTENCIAL QUADRADO

Soluções de equação de Schroedinger para o Poço de Potencial Quadrado

- Soluções para partículas incidindo com energia maior que a altura potencial
- Soluções para partículas incidindo com a energia menor que a altura potencial

A BARREIRA DE POTENCIAL

Soluções de equação de Schroedinger para a barreira de potencial Energia da partícula menor que a altura da barreira Energia da partícula maior que a altura da barreira Cálculos do coeficiente de transmissão e de reflexão fluxo de probabilidade

O POÇO QUADRADO INFINITO

Soluções de Equação de Schroedinger para poço quadrado infinito

O OSCILADOR HARMÔNICO SIMPLES

O Oscilador Harmônico Simples (dedução da sua Equação Diferencial) Os polinômios de Hermite Os níveis de energia do oscilador As funções de onda p/ cada nível

O ÁTOMO DE HIDROGÊNIO

Dedução da Equação Diferencial pelo método de separação de variáveis Soluções das equações Autovalores Números quânticos Degenerescência Valores possíveis para l, m e n Algumas autofunções do átomo de hidrogênio

MOMENTO ANGULAR ORBITAL L

Momento de dipolo magnético orbital de um elétron em uma órbita Magnéton de Bohr Fator g Precessão de Lamor Dipolo magnético num campo magnético uniforme A experiência de Stern Gerlach e o spin do elétron Momento angular J=L+S

BIBLIOGRAFIA

EISBERG, ROBERT M. - Fundamentos da Física Moderna

RESNICK/EISBERG - <u>Física Quântica</u>
TIPLER, PAUL A. - <u>Física</u> - Vol. 3
COEN, BERNAD - <u>Quantum Mechanics</u>
ALONSO/FINN - <u>Fundamentos Quânticos</u> - Volume III
BORN MAX, Física Atômica Fundação Calouste 4ª edição
LOPES J. LEITE- Estrutura Quântica da Matéria 2ª edição 1983 - Érica Editora e Gráfica